Non-Parametric Up-and-Down Experimentation Revisited ${ }^{1}$

Michael N. Katehakis

Rutgers Business School

18TH ANNUAL APPLIED PROBABILITY DAY: IN HONOR AND MEMORY OF CYRUS DERMAN

THE CENTER FOR APPLIED PROBABILITY AT COLUMBIA UNIVERSITY
December 2, 2011

[^0]
The Basic Problem

Derman C. (1957). Non-Parametric Up-and-down Experimentation The Annals of Mathematical Statistics, 28(3), pp. 795-798.

- Let $Y(x)$ be a random variable such that:

$$
Y(x)= \begin{cases}1 & P(Y(x)=1)=F(x) \\ 0 & P(Y(x)=0)=1-F(x)\end{cases}
$$

where $F(x)$ is an unknown distribution function.

- Objective: given α estimate the α - quantile of $F(x)$,

$$
x_{a}=F^{-1}(\alpha)
$$

with observations distributed like $Y(x)$ where the choice of x is under control.

- Special Case: Median: $x_{0.50}=L_{0.50}, \alpha=.50$.

Possible Cases

Possible Cases

$F\left(x_{\alpha}\right)=\alpha$

$$
\begin{aligned}
& x_{\alpha}=\inf \{x \in \mathbf{N}: F(x) \geq \alpha\} \\
& \underline{x}_{\alpha}=\sup \{x \in \mathbf{N}: F(x) \leq \alpha\}
\end{aligned}
$$

Objective:
Start with $\quad x_{0}, \quad$ observe $Y\left(x_{0}\right)=1,0, \quad \operatorname{Pr}\left(Y\left(x_{0}\right)=1\right)=F\left(x_{0}\right)$.
choose $\quad X_{1}, \quad$ observe $Y\left(X_{1}\right)=1,0, \operatorname{Pr}\left(Y\left(X_{1}\right)=1\right)=F\left(X_{1}\right)$.

Possible Cases

$F\left(x_{\alpha}\right)=\alpha$

$$
\begin{aligned}
& x_{\alpha}=\inf \{x \in \mathbf{N}: F(x) \geq \alpha\} \\
& \underline{x}_{\alpha}=\sup \{x \in \mathbf{N}: F(x) \leq \alpha\}
\end{aligned}
$$

Objective:
Start with $\quad x_{0}, \quad$ observe $Y\left(x_{0}\right)=1,0, \quad \operatorname{Pr}\left(Y\left(x_{0}\right)=1\right)=F\left(x_{0}\right)$.
choose $\quad X_{1}, \quad$ observe $Y\left(X_{1}\right)=1,0, \operatorname{Pr}\left(Y\left(X_{1}\right)=1\right)=F\left(X_{1}\right)$.

Possible Cases

$F\left(x_{\alpha}\right)=\alpha$

$$
\begin{aligned}
& x_{\alpha}=\inf \{x \in \mathbf{N}: F(x) \geq \alpha\} \\
& \underline{x}_{\alpha}=\sup \{x \in \mathbf{N}: F(x) \leq \alpha\}
\end{aligned}
$$

Objective:
Start with $\quad x_{0}, \quad$ observe $Y\left(x_{0}\right)=1,0, \quad \operatorname{Pr}\left(Y\left(x_{0}\right)=1\right)=F\left(x_{0}\right)$.
choose $\quad X_{1}, \quad$ observe $Y\left(X_{1}\right)=1,0, \operatorname{Pr}\left(Y\left(X_{1}\right)=1\right)=F\left(X_{1}\right)$.
choose $\quad X_{n}, \quad$ such that $\hat{x}_{\alpha}\left(x_{0}, X_{1}, \ldots, X_{n}\right) \xrightarrow{\text { a.s. }} x_{\alpha}$.

Relevance

Newsvendor Model

- When x items are ordered in a period we observe if there is: no shortage $Y(x)=1$ or shortage $Y(x)=0$.
- The optimal order quantity x_{α} is determined by a quantile requirement: $x_{\alpha}=\inf \{x \in \mathbf{N}: F(x) \geq \alpha=(p-c) / p\}$
- F is the demand distribution.

Relevance

Newsvendor Model

- When x items are ordered in a period we observe if there is: no shortage $Y(x)=1$ or shortage $Y(x)=0$.
- The optimal order quantity x_{α} is determined by a quantile requirement: $x_{\alpha}=\inf \{x \in \mathbf{N}: F(x) \geq \alpha=(p-c) / p\}$
- F is the demand distribution.

Drug Testing

- Dosage is x
- Observe a success $Y(x)=1$ or failure $Y(x)=0$.
- The optimal dosage x_{α} is determined by a quantile requirement:

$$
x_{\alpha}=\inf \{x \in \mathbb{N}: F(x) \geq \alpha\}
$$

- F is the quantal response function.

Relevance

Newsvendor Model

- When x items are ordered in a period we observe if there is: no shortage $Y(x)=1$ or shortage $Y(x)=0$.
- The optimal order quantity x_{α} is determined by a quantile requirement: $x_{\alpha}=\inf \{x \in \mathbf{N}: F(x) \geq \alpha=(p-c) / p\}$
- F is the demand distribution.

Drug Testing

- Dosage is x
- Observe a success $Y(x)=1$ or failure $Y(x)=0$.
- The optimal dosage x_{α} is determined by a quantile requirement:

$$
x_{\alpha}=\inf \{x \in \mathbb{N}: F(x) \geq \alpha\}
$$

- F is the quantal response function.

Educational Testing

- Difficulty level of a test question is x
- Observe a correct $Y(x)=1$ or wrong $Y(x)=0$ answer.
- The student's ability is the x_{α} for which $F\left(x_{\alpha}\right)=\alpha$

Relevance

Newsvendor Model

- When x items are ordered in a period we observe if there is: no shortage $Y(x)=1$ or shortage $Y(x)=0$.
- The optimal order quantity x_{α} is determined by a quantile requirement: $x_{\alpha}=\inf \{x \in \mathbf{N}: F(x) \geq \alpha=(p-c) / p\}$
- F is the demand distribution.

Drug Testing

- Dosage is x
- Observe a success $Y(x)=1$ or failure $Y(x)=0$.
- The optimal dosage x_{α} is determined by a quantile requirement:

$$
x_{\alpha}=\inf \{x \in \mathbb{N}: F(x) \geq \alpha\}
$$

- F is the quantal response function.

Educational Testing

- Difficulty level of a test question is x
- Observe a correct $Y(x)=1$ or wrong $Y(x)=0$ answer.
- The student's ability is the x_{α} for which $F\left(x_{\alpha}\right)=\alpha$

Manufacturing

Relevance

Newsvendor Model

- When x items are ordered in a period we observe if there is: no shortage $Y(x)=1$ or shortage $Y(x)=0$.
- The optimal order quantity x_{α} is determined by a quantile requirement: $x_{\alpha}=\inf \{x \in \mathbf{N}: F(x) \geq \alpha=(p-c) / p\}$
- F is the demand distribution.

Drug Testing

- Dosage is x
- Observe a success $Y(x)=1$ or failure $Y(x)=0$.
- The optimal dosage x_{α} is determined by a quantile requirement:

$$
x_{\alpha}=\inf \{x \in \mathbb{N}: F(x) \geq \alpha\}
$$

- F is the quantal response function.

Educational Testing

- Difficulty level of a test question is x
- Observe a correct $Y(x)=1$ or wrong $Y(x)=0$ answer.
- The student's ability is the x_{α} for which $F\left(x_{\alpha}\right)=\alpha$

Manufacturing

The Sensitivity of an Explosive

Derman's Up \& Down Method

- Grid or experimental range of x to a set of numbers of the form

$$
b+h n \quad(-\infty<b<\infty, h>0, n=0, \pm 1, \ldots)
$$

For convenience one can assume $b=0, h=1$.

- Procedure:

Start with x_{0} (init. guess) $y_{0}=Y\left(x_{0}\right)$ is observed where $P\left(Y\left(x_{0}\right)=1\right)=F\left(x_{0}\right)=1-P\left(Y\left(x_{0}\right)=0\right)$.
Given $x_{0}, y\left(x_{0}\right), \ldots, x_{n-1}, y\left(x_{n-1}\right)$ for $n \geq 0$, define:
where w.l.o.g. $\alpha>1 / 2$

- The estimate $\hat{x}_{\alpha, n}$ of x_{α} based on n observations is

$$
\hat{x}_{\alpha, n}= \begin{cases}\text { the most frequent value of } x^{\prime} s, & \text { if unique, } \\ \text { the arithmetic average of the most frequent levels } & \text { otherwise } .\end{cases}
$$

Derman's Main Result

Derman's Main Result

Condition A: If $F(x)$ is strictly increasing for $x \in\left[x_{\alpha}-1, x_{\alpha}\right]$ then:

$$
\operatorname{Pr}\left(\max \left(\left|\varlimsup_{n} \hat{x}_{\alpha, n}-x_{\alpha}\right|,\left|\underline{\lim }_{n} \hat{x}_{\alpha, n}-x_{\alpha}\right|\right)<1\right)=1
$$

Derman's Main Result

Condition A: If $F(x)$ is strictly increasing for $x \in\left[x_{\alpha}-1, x_{\alpha}\right]$ then:

$$
\operatorname{Pr}\left(\max \left(\left|\varlimsup_{n} \hat{x}_{\alpha, n}-x_{\alpha}\right|,\left|\underline{\lim }_{n} \hat{x}_{\alpha, n}-x_{\alpha}\right|\right)<1\right)=1
$$

Main Tool: $\pi(x)=\lim _{n} \operatorname{Pr}\left(X_{n}=x \mid x_{o}\right)$

$$
\pi(0) \leq \pi(1) \leq \ldots \leq \pi\left(x_{\alpha}-1\right)<\pi\left(x_{\alpha}\right) \geq \pi\left(x_{\alpha}+1\right) \geq \pi\left(x_{\alpha}+2\right) \geq \ldots
$$

Derman's U-D Revisited

- What is an efficient Stopping Criterion ?
- What is the Error Probability ?
- What if Condition A does not hold ?

Derman's U-D Revisited - Answers

Derman's U-D Revisited - Answers

Observation 1 if x_{α} is on the grid

$$
p_{00}=1 \geq p_{12} \geq \ldots \geq p_{x_{\alpha}-1 x_{\alpha}} \geq p_{x_{\alpha} x_{\alpha}+1}=1 / 2 \geq p_{x_{\alpha}+1 x_{\alpha}+2} \geq \ldots
$$

Derman's U-D Revisited - Answers

Observation 1 if x_{α} is on the grid

$$
p_{00}=1 \geq p_{12} \geq \ldots \geq p_{x_{\alpha}-1 x_{\alpha}} \geq p_{x_{\alpha} x_{\alpha}+1}=1 / 2 \geq p_{x_{\alpha}+1 x_{\alpha}+2} \geq \ldots
$$

Observation 2 if x_{α} is not on the grid:

$$
p_{00}=1 \geq p_{12} \geq \ldots \geq p_{x_{\alpha}-1 x_{\alpha}}>1 / 2 \geq p_{x_{x_{\alpha} x_{\alpha}+1}} \geq p_{x_{\alpha}+1 x_{\alpha}+2} \geq \ldots
$$

Derman's U-D Revisited - Answers

Observation 1 if x_{α} is on the grid
$p_{00}=1 \geq p_{12} \geq \ldots \geq p_{x_{\alpha}-1 x_{\alpha}} \geq p_{x_{\alpha} x_{\alpha}+1}=1 / 2 \geq p_{x_{\alpha}+1 x_{\alpha}+2} \geq \ldots$

Observation 2 if x_{α} is not on the grid:
$p_{00}=1 \geq p_{12} \geq \ldots \geq p_{x_{\alpha}-1 x_{\alpha}}>1 / 2 \geq p_{x_{\alpha} x_{\alpha}+1} \geq p_{x_{\alpha}+1 x_{\alpha}+2} \geq \ldots$
Compare with :
$\pi(0) \leq \pi(1) \leq \ldots \leq \pi\left(x_{\alpha}-1\right) \leq \pi\left(x_{\alpha}\right) \geq \pi\left(x_{\alpha}+1\right) \geq \pi\left(x_{\alpha}+2\right) \geq \ldots$

Derman's U-D Revisited -Continued

$=F(x)$

- P $_{\text {Pox }}+1$
$=0.5$

Derman's U-D Revisited -Continued

$\alpha=.0 .80, x_{\alpha}=24$ not on the grid: $F(23)<0.8<F(24)$

$$
p_{23,24}>1 / 2>p_{24,25}>p_{25,26}>\ldots
$$

Derman and Katehakis (2010-2011) New Results

For simplicity consider the case x_{α} is on the grid.

- We can Stop the procedure:
- $\tau_{\alpha}^{1}=\inf \left\{k: \hat{p}_{k, k+1}\left(x_{0}, \ldots, X_{k}\right) \in(1 / 2-\epsilon, 1 / 2+\epsilon)\right\}$
- $\tau_{\alpha}^{2}=\inf \left\{k: \hat{p}_{k, k+1}\left(x_{0}, \ldots, X_{k}\right) \in(1 / 2-\epsilon, 1 / 2+\epsilon) \&\right.$ $\left.V_{k}=\max _{k^{\prime}}\left\{V_{k^{\prime}}\right\}\right\}$
- $\hat{x}_{a}=X_{\tau_{\alpha}^{i}}$
- Have $\operatorname{Pr}\left(\tau_{\alpha}^{i}>u\right)=c_{F}^{i}\left(e^{-u}+\epsilon_{F}^{i}(n, u)\right)$ where $\left.\epsilon_{F}^{i}(n, u)\right) \rightarrow 0(n \rightarrow \infty)$
- We can modify the procedure by taking a second sample at τ_{α} (Two Stage)
- Working on using techniques of Adaptive MDPs to obtain:

$$
R_{N}^{\pi} \geq R_{N}^{\pi^{D K}}=M_{D K}(P) \log N+o(\log N)
$$

Derman and Katehakis (2010-2011) New Results

For simplicity consider the case x_{α} is on the grid.

- We can Stop the procedure:
- $\tau_{\alpha}^{1}=\inf \left\{k: \hat{p}_{k, k+1}\left(x_{0}, \ldots, X_{k}\right) \in(1 / 2-\epsilon, 1 / 2+\epsilon)\right\}$
- $\tau_{\alpha}^{2}=\inf \left\{k: \hat{p}_{k, k+1}\left(x_{0}, \ldots, X_{k}\right) \in(1 / 2-\epsilon, 1 / 2+\epsilon) \&\right.$ $\left.V_{k}=\max _{k^{\prime}}\left\{V_{k^{\prime}}\right\}\right\}$
- $\hat{x}_{a}=X_{\tau_{\alpha}^{i}}$
- Have $\operatorname{Pr}\left(\tau_{\alpha}^{i}>u\right)=c_{F}^{i}\left(e^{-u}+\epsilon_{F}^{i}(n, u)\right)$ where $\left.\epsilon_{F}^{i}(n, u)\right) \rightarrow 0(n \rightarrow \infty)$
- We can modify the procedure by taking a second sample at τ_{α} (Two Stage)
- Working on using techniques of Adaptive MDPs to obtain:

$$
R_{N}^{\pi} \geq R_{N}^{\pi^{D K}}=M_{D K}(P) \log N+o(\log N)
$$

Similar results hold in the case x_{α} is not on the grid or Condition A does not hold.

Background

Non Parametric "Up \& Down" Methods

- Anderson, T., McCarthy, P., Tukey, J., (1946). Staircase method of sensitivity testing. Naval Ordinance Report 65-46, Statistical Research Group, Princeton University, Princeton, NJ.
- Dixon, W.J. and Mood, A.M. (1948). A method for obtaining and analyzing sensitive data. Journal of the American Statistical Association 43, pp. 109 -126. The validity of their procedure depends on the assumption that $F(x)$ is normal.
- Derman C. (1957). Non-Parametric Up-and-down Experimentation
- Wetherill, G.B. (1963). Sequential estimation of quantal response curves.

Background

Non Parametric "Up \& Down" Methods

- Anderson, T., McCarthy, P., Tukey, J., (1946). Staircase method of sensitivity testing. Naval Ordinance Report 65-46, Statistical Research Group, Princeton University, Princeton, NJ.
- Dixon, W.J. and Mood, A.M. (1948). A method for obtaining and analyzing sensitive data. Journal of the American Statistical Association 43, pp. 109 -126. The validity of their procedure depends on the assumption that $F(x)$ is normal.
- Derman C. (1957). Non-Parametric Up-and-down Experimentation
- Wetherill, G.B. (1963). Sequential estimation of quantal response curves.
- Wetherhill, G.B., Glazebrook, K.D., (1986). Sequential Methods in Statistics, Chapman \& Hall, London.
- Durham, D.S., Flournoy N. and Rosenberger W. F (1997). A Random Walk Rule for Phase I Clinical Trials
- Bortot P. and Giovagnolia A. (2005). Up-and-down experiments of first and second order
- Ivanova A(2006). Dose-Finding in Oncology-Nonparametric Methods,
- Pollak, R., Palazotto, A., Nicholas, T. (2006). A simulation-based investigation of the stair- case method for fatigue strength testing.
- Baldi Antognini A. and . Giovagnoli A (2010). Compound Optimal Allocation for Individual and Collective Ethics in Binary Clinical Trials,

Background: "Stochastic Approximation" and Related Methods

- Robbins, H. and Monro, S. (1951). A stochastic approximation method, The Annals of Mathematical Statistics, 22(3), pp. 400-407.
- Derman C. and J. Sacks (1959). On Dvoretzky's Stochastic Approximation Theorem, The Annals of Mathematical Statistics, 30(2), pp. 601-606.
- Frederic M. Lord (1971) Tailored Testing, An Application of Stochastic Approximation Journal of the American Statistical Association Vol. 66, No. 336, pp. 707-711.

The Robbins and Monro SA scheme can be used for estimating any quantile and it imposes no parametric assumptions on $F(x)$.

- The method does assume, however, that the range of possible experimental values of x is the real line.
- It has slow convergence rate.

Background: Optimal Adaptive Policies for MABs

- Gittins, J.C. and Jones, D.M. (1979). "A dynamic allocation index for the discounted multiarmed bandit problem",
- Katehakis M. N. and A. F. Veinott Jr. (1987). "The Multi-Armed Bandit problem: decomposition and computation",

Background: Optimal Adaptive Policies for MABs

- Gittins, J.C. and Jones, D.M. (1979). "A dynamic allocation index for the discounted multiarmed bandit problem",
- Katehakis M. N. and A. F. Veinott Jr. (1987). "The Multi-Armed Bandit problem: decomposition and computation",
- Lai T.L. and H. E. Robbins (1985) "Asymptotically Efficient Adaptive Allocation Rules",

$$
\begin{gathered}
R_{N}^{\pi}=\max \left\{\mu_{1}, \ldots, \mu_{n}\right\} N-V_{N}^{\pi} \\
R_{N}^{\pi} \geq R_{N}^{\pi^{L R}}=M_{L R}(P) \log N+o(\log N)
\end{gathered}
$$

- Note:

$$
R_{N}^{\pi^{0}}=M_{L R}(P) \log N+o(\log N)=o\left(N^{a}\right) \quad \forall a>0
$$

- Even better:

$$
\varlimsup_{N} R_{N}^{\pi^{0}} / R_{N}^{\pi} \leq 1
$$

- Katehakis M. N. and H. E. Robbins (1995). "Sequential choice from several populations",

Background: Optimal Adaptive Policies for MDPs

- Burnetas, A.N. and M. N. Katehakis (1996) "Optimal Adaptive Policies for Sequential Allocation Problems",
- Burnetas, A.N. and M. N. Katehakis (1997) "Optimal Adaptive Policies for Markov Decision Processes",

$$
\begin{gathered}
R_{N}^{\pi}=V_{N}-V_{N}^{\pi} \\
R_{N}^{\pi} \geq R_{N}^{\pi^{B K}}=M_{B K}(P) \log N+o(\log N)
\end{gathered}
$$

Background: Optimal Adaptive Policies for MDPs

- Burnetas, A.N. and M. N. Katehakis (1996) "Optimal Adaptive Policies for Sequential Allocation Problems",
- Burnetas, A.N. and M. N. Katehakis (1997) "Optimal Adaptive Policies for Markov Decision Processes",

$$
\begin{gathered}
R_{N}^{\pi}=V_{N}-V_{N}^{\pi} \\
R_{N}^{\pi} \geq R_{N}^{\pi^{B K}}=M_{B K}(P) \log N+o(\log N)
\end{gathered}
$$

Near-optimal Regret Bounds for Reinforcement Learning

- Auer, P. and R. Ortner (2007) Logarithmic online regret bounds for undiscounted reinforcement learning.

$$
R_{N}^{\pi} \geq R_{N}^{\pi_{N}^{A O}}=M_{A O}(P) \log N+o(\log N)
$$

- Tewari A. and P. Bartlett (2008). "Optimistic linear programming gives logarithmic regret for irreducible MDPs",

$$
R_{N}^{\pi} \geq R_{N}^{\pi^{T B}}=M_{T B}(P) \log N+o(\log N)
$$

- Auer, P. and Jaksch, T. and Ortner, R. (2009). "Near-optimal regret bounds for reinforcement learning",

Background: Optimal Adaptive Policies for MDPs

- Burnetas, A.N. and M. N. Katehakis (1996) "Optimal Adaptive Policies for Sequential Allocation Problems",
- Burnetas, A.N. and M. N. Katehakis (1997) "Optimal Adaptive Policies for Markov Decision Processes",

$$
\begin{gathered}
R_{N}^{\pi}=V_{N}-V_{N}^{\pi} \\
R_{N}^{\pi} \geq R_{N}^{\pi^{B K}}=M_{B K}(P) \log N+o(\log N)
\end{gathered}
$$

Near-optimal Regret Bounds for Reinforcement Learning

- Auer, P. and R. Ortner (2007) Logarithmic online regret bounds for undiscounted reinforcement learning.

$$
R_{N}^{\pi} \geq R_{N}^{\pi_{N}^{A O}}=M_{A O}(P) \log N+o(\log N)
$$

- Tewari A. and P. Bartlett (2008). "Optimistic linear programming gives logarithmic regret for irreducible MDPs",

$$
R_{N}^{\pi} \geq R_{N}^{\pi^{T B}}=M_{T B}(P) \log N+o(\log N)
$$

- Auer, P. and Jaksch, T. and Ortner, R. (2009). "Near-optimal regret bounds for reinforcement learning",

$$
M_{A O}(P)>M_{T B}(P)>M_{B K}(P) \forall P
$$

Background: Optimal Adaptive Policies for MDPs

- Burnetas, A.N. and M. N. Katehakis (1996) "Optimal Adaptive Policies for Sequential Allocation Problems",
- Burnetas, A.N. and M. N. Katehakis (1997) "Optimal Adaptive Policies for Markov Decision Processes",

$$
\begin{gathered}
R_{N}^{\pi}=V_{N}-V_{N}^{\pi} \\
R_{N}^{\pi} \geq R_{N}^{\pi^{B K}}=M_{B K}(P) \log N+o(\log N)
\end{gathered}
$$

Near-optimal Regret Bounds for Reinforcement Learning

- Auer, P. and R. Ortner (2007) Logarithmic online regret bounds for undiscounted reinforcement learning.

$$
R_{N}^{\pi} \geq R_{N}^{\pi_{N}^{A O}}=M_{A O}(P) \log N+o(\log N)
$$

- Tewari A. and P. Bartlett (2008). "Optimistic linear programming gives logarithmic regret for irreducible MDPs",

$$
R_{N}^{\pi} \geq R_{N}^{\pi^{T B}}=M_{T B}(P) \log N+o(\log N)
$$

- Auer, P. and Jaksch, T. and Ortner, R. (2009). "Near-optimal regret bounds for reinforcement learning",

$$
M_{A O}(P)>M_{T B}(P)>M_{B K}(P) \forall P
$$

Background: Optimal Adaptive Policies for MDPs

- Burnetas, A.N. and M. N. Katehakis (1996) "Optimal Adaptive Policies for Sequential Allocation Problems",
- Burnetas, A.N. and M. N. Katehakis (1997) "Optimal Adaptive Policies for Markov Decision Processes",

$$
\begin{gathered}
R_{N}^{\pi}=V_{N}-V_{N}^{\pi} \\
R_{N}^{\pi} \geq R_{N}^{\pi^{B K}}=M_{B K}(P) \log N+o(\log N)
\end{gathered}
$$

Near-optimal Regret Bounds for Reinforcement Learning

- Auer, P. and R. Ortner (2007) Logarithmic online regret bounds for undiscounted reinforcement learning.

$$
R_{N}^{\pi} \geq R_{N}^{\pi_{N}^{A O}}=M_{A O}(P) \log N+o(\log N)
$$

- Tewari A. and P. Bartlett (2008). "Optimistic linear programming gives logarithmic regret for irreducible MDPs",

$$
R_{N}^{\pi} \geq R_{N}^{\pi^{T B}}=M_{T B}(P) \log N+o(\log N)
$$

- Auer, P. and Jaksch, T. and Ortner, R. (2009). "Near-optimal regret bounds for reinforcement learning",

$$
M_{A O}(P)>M_{T B}(P)>M_{B K}(P) \forall P
$$

The Robbins Monro Method for x_{α}

Compute x_{α} such that

$$
M\left(x_{\alpha}\right)=\alpha
$$

- Deterministic case $M(x)$ is known solution by:

$$
x_{n}=x_{n-1}+a_{n}\left[\alpha-M\left(x_{n-1}\right)\right],
$$

- Stochastic case $M(x)$ is unknown

$$
E(Y(x))=M(x)=\alpha . \quad \forall x
$$

Solution by:

$$
\left.x_{n}=x_{n-1}+a_{n}\left[\alpha-y_{n-1}\right)\right],
$$

The estimate $\hat{x}_{\alpha, n}$ of x_{α} based on n observations is $\hat{x}_{\alpha, n}=x_{n}$, Under regularity conditions ${ }^{2}$

[^1]
The Dixon and Mood Method for $L D_{50}\left(x_{0.50}\right)$

- Grid or experimental range ${ }^{3}$ of x to a set of numbers of the form

$$
b+h n \quad(-\infty<b<\infty, h>0, n=0, \pm 1, \ldots) .
$$

For convenience one can assume $b=0, h=1$.

- Data: Treatments are administered sequentially at dosage: X_{i}, as follows:

Start with x_{0} (arbitrary guess) $y_{0}=Y\left(x_{0}\right)$ is observed where $P\left(Y\left(x_{0}\right)=1\right)=F\left(x_{0}\right)=1-P\left(Y\left(x_{0}\right)=0\right)$.
Given $x_{0}, y\left(x_{0}\right), \ldots, x_{k}, y\left(x_{n-1}\right)$ for $n \geq 0$, define recursively

$$
x_{n}= \begin{cases}x_{n-1}+1 \text { if } & y\left(x_{k}\right)=0, \\ x_{n-1}-1 \text { if } & y\left(x_{k}\right)=1\end{cases}
$$

- The estimate \hat{x}_{α} of x_{α} based on n observations is

$$
\hat{x}_{0.50}=\frac{1}{n+1} \sum_{j=1}^{n+1} x_{j}
$$

[^2]
[^0]: ${ }^{1}$ Joint work with Cyrus Derman

[^1]: ${ }^{2}$ E.g., M is non-decreasing, there exists a solution $M\left(x_{\alpha}\right)=\alpha, \exists \frac{M(x)}{d x}>0$ at x_{α}, and $\sum_{n=0}^{\infty} a_{n}=\infty, \sum_{n=0}^{\infty} a_{n}^{2}<\infty$

[^2]: ${ }^{3}$ Natural limitations such as when x is obtained by a counting procedure limitations on the precision of measuring instruments.

